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A B S T R A C T

The development of machine learning solutions in medicine is often hindered by difficulties associated with
sharing patient data. Distributed learning aims to train machine learning models locally without requiring data
sharing. However, the utility of distributed learning for rare diseases, with only a few training examples at each
contributing local center, has not been investigated. The aim of this work was to simulate distributed learning
models by ensembling with artificial neural networks (ANN), support vector machines (SVM), and random
forests (RF) and evaluate them using four medical datasets. Distributed learning by ensembling locally trained
agents improved performance compared to models trained using the data from a single institution, even in cases
where only a very few training examples are available per local center. Distributed learning improved when
more locally trained models were added to the ensemble. Local class imbalance reduced distributed SVM per-
formance but did not impact distributed RF and ANN classification. Our results suggest that distributed learning
by ensembling can be used to train machine learning models without sharing patient data and is suitable to use
with small datasets.

1. Introduction

Distributed learning is a comparably novel approach for training
machine learning models that circumvents the need for data sharing
beyond local health care centers. The approach is particularly appealing
for machine learning applications in medicine because the amount of
data at a single institution may be inadequate for training accurate and
generalizable models [1–3]. This is especially relevant for rare diseases,
where very few patients are seen at any single institution [4]. Thus,
collaboration between multiple institutions is necessary to train ma-
chine learning models on sufficient amounts of data. However, sharing
patient data to create a central database for model training (Fig. 1A) is
challenging because of legal [5] and ethical concerns [6] about medical
data privacy [7–9]. Thus, an alternative to central learning is necessary
for healthcare data.

Distributed learning forgoes the need for collecting data in a cen-
tralized fashion by performing model training in situ at each local in-
stitution (Fig. 1B). These locally trained “agents” only consist of ab-
stracted mathematical parameters and do not contain data from
individual patients. After local training, the agents are sent to a central
server that combines the local models generated at individual health-
care institutions into a single global model. This global model can
leverage insights derived from a greater amount and variety of patient
data than any individual model trained at a single institution.

Two main approaches to distributed learning of artificial neural
networks (ANN) have been explored in recent years. In federated
averaging, multiple ANNs are trained in parallel and the trained para-
meters are averaged to form a single model [10–13]. In cyclical weight
transfer, a single ANN is trained at one institution at a time, moving
sequentially between institutions [14]. Although ANNs have become
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popular due to the improved performance solving various classification
problems compared to traditional machine learning techniques [15], it
remains an open question if they are the best machine learning classi-
fier for distributed learning. Thus, a detailed comparison with other
machine learning classifiers, such as support vector machines (SVM)
and random forest (RF), is necessary.

One method to combine local machine learning models (agents) that
is independent of the classifier type is to create a global ensemble
classifier. Here, all agents are kept independent and each agent makes a
prediction on new data, which are combined to one global prediction.
However, previous studies evaluating distributed learning with en-
sembling have used large local datasets [14,16], which may already be
sufficient to train accurate models at a single institution. The suitability
of this approach in cases of very few training examples per agent has
not been explored.

2. Objective

In this study, we investigate distributed learning with ensembling
using three types of machine learning classifiers: ANN, SVM, and RF.
We compare the classifiers on binary classification tasks in four medical
datasets (Table 1). We aimed to investigate the effects of: (1) local
dataset size on distributed model performance, particularly for the case
of rare diseases with very few examples per institution, (2) the number
of collaborating institutions on distributed model performance, and (3)
class imbalance at local institutions on distributed model performance.
These comparisons are made across all three classifier types and four
datasets.

3. Materials

Four medical datasets were used for this work: three collected from
the publicly accessible UC Irvine machine learning database (breast
cancer, diabetes, and heart disease) and one curated by the Alzheimer’s
Disease Neuroimaging Initiative (mild cognitive impairment), which
were obtained from the ADNI database (http://adni.loni.usc.edu/). The
goal of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) is to use
clinical, neuropsychological, behavioral, genetic, and neuroimaging
data to track the progression of Alzheimer’s disease.

The classification task for all datasets was to distinguish between
patients and healthy subjects. All features in the datasets were nor-
malized using either z-score normalization for continuous values
(mean: 0, standard deviation: 1) or min-max normalization (min: 0,
max: 1) for discrete values. A summary of each dataset used for simu-
lations is found in Table 1.

4. Methods

All model training and testing was done on Compute Canada and
Calcul Quebec computing clusters using Python 3.6.3.

4.1. Model performance evaluation

Model performance was evaluated and reported as the macro-
average F1 score. Although the datasets were not balanced overall, the
simulated global training data was selected to achieve a balanced class
distribution. As a result, the test data was imbalanced (Table 1). To
mitigate the effect of imbalanced test data on model performance
scores, the macro-average F1 score was chosen to measure perfor-
mance. Therefore, the F1 score is independently computed for each
class in the test set and the unweighted mean of the scores between
classes is calculated, i.e. the mean of the F1 score for the healthy class
and patient class. Thus, unlike accuracy, the macro-average F1 score is
not biased by class prevalence in the test set and can be used more
intuitively in the case of imbalanced data.

4.2. Classifier design

For each classifier type (ANN, SVM, RF), a number of parameters
are available. As we were especially interested in distributed learning
performance on small datasets, we determined the classifier parameters
that maximized local agent performance when trained on very few
(≤10) examples across the four datasets. For each dataset, classifier
type, and parameter setting (described below), single institution models
were evaluated at cases of 2, 4, 8, or 10 training examples. Monte-Carlo
cross-validation with 25 iterations was performed for each case, and the
global average across iterations and institution sizes was calculated.
The parameters that resulted in the best performance, i.e. the highest
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Fig. 1. Distributed learning circumvents the need to share data to train a machine learning model. (A) In central learning, data is collected from a number of
institutions into a centralized database. The central model is trained on this centralized database. (B) In distributed learning, model training occurs locally at each
institution. Rather than sharing data, the institutions share their locally trained models (agents). The distributed model is constructed from the combination of locally
trained agents.
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macro-average F1 score on the test data, across the four datasets were
used for distributed learning (Supplemental Figure S1).

4.2.1. Artificial neural network models
Fully connected ANN models were implemented in Keras 2.2.4 with

Tensorflow 1.12. The ANNs had three layers: two hidden layers with
ReLu units and one sigmoid classification layer. L1 regularization
(0.0001) was used. ANN models were trained for 100 epochs with 64
example batch sizes using the “binary cross-entropy” optimizer. We
tested ANNs with 16, 128, or 1024 neurons per hidden layer in single
institution experiments. The final model used for distributed learning
experiments had 128 neurons per hidden layer.

4.2.2. Support vector machine models
SVMs were implemented in Scikit-learn 0.21. The C parameter was

set to 1.0 and gamma was defined as the reciprocal of the number of
features in the dataset. We tested linear, quadratic, cubic, Gaussian, and
sigmoid kernels in single institution experiments. The final model used
for distributed learning experiments used the sigmoid kernel.

4.2.3. Random forest models
RFs were implemented in Scikit-learn 0.21. A balanced RF algo-

rithm was used. We tested tree numbers of 10, 100, 1000, and 10,000 in
single institution experiments. The final model used for distributed
learning experiments used 1000 trees.

4.3. Distributed learning

4.3.1. Simulating distributed data
To prevent selection-biased conclusions being drawn from a single

split of the data into simulated training and test sets, we performed
Monte-Carlo cross-validation, a form of bootstrapping by random
sampling with replacement. In each simulation experiment and data-
base, we used 25 iterations of random sub-sampling, with new training
and test sets being randomly assigned in each iteration.

To simulate distributed data that is not shared between institutions,
we created subsets of training data for each local model by sampling
without replacement from the global training set. Thus, each simulated
subset was independent. This simulation scheme allowed us to modify
the size of local datasets from large (greater than 25% of the total
training set) to very small (≤10 examples per institution). Additionally,
it allowed us to introduce controlled heterogeneity into local datasets,
such as non-uniform training set sizes or local class imbalance. The
amount of training examples used for simulations is reported in Table 1.

4.3.2. Distributed model training and testing
For each classifier type (ANN, SVM, RF), local models (“agents”)

were trained on these independent subsets, i.e. local agents exclusively
learned from their own local datasets. The distributed learning model
was created by ensembling the predictions of local agents on the test
data. For each test example, the local agents made independent pre-
dictions on the class probabilities. The distributed model’s class prob-
ability on the test case is the arithmetic mean of the predicted class
probabilities from the local agents. This mean class probability was
used to classify the test datasets. For example, in distributed ANNs, a
series of ANN agents were trained on the independent local training
datasets. Then, for a given test case, each locally trained ANN agent
produces a class probability prediction. The arithmetic mean of these
class probabilities from the agents is the predicted class probability
from the distributed ANN, and the test case is classified using this
probability.

The distributed model was compared to central learning and single
institution models. Central learning was performed using the entire
training dataset, by amalgamating the training data across simulated or
real institutions into a single large training set. A single institution
model was created by training a model on a single subset of the training
data. This effectively simulates the model created by an institution that
is not participating in distributed learning, but instead relying solely on
its own data. Multiple single institution models were created, and their
performance metrics were averaged to estimate single institution per-
formance.

4.4. Statistics

Results from simulation experiments are reported as mean + stan-
dard deviation (SD), calculated from the results of Monte-Carlo cross-
validation iterations. Statistical comparisons were done with Graphpad
Prism 8.2 using two-way ANOVAs and Holm-Sidak’s post-hoc multiple
comparisons test. Statistical significance was set at P-value < 0.01.

5. Results

5.1. Effect of institution size

First, we assessed the impact of local dataset size on distributed
model performance. Therefore, the local dataset size was iteratively
reduced, up to the limit of two examples per local dataset. A central
model was trained on the entire training set, while single institution
models and distributed learning agents were trained on these progres-
sively smaller local datasets (Fig. 2).

Distributed learning by ensembling statistically improved

Table 1
Summary of datasets used.

Disease Mild cognitive impairment Breast cancer Diabetes Heart disease

Database Alzheimer’s Disease Neuroimaging
Initiative

Wisconsin Breast Cancer Diagnostic
Dataset

Pima Indians Diabetes Dataset Cleveland Heart Disease Dataset

Features Age, sex, years of education,
regional brain volumes and surface
areas, and regional cortical
thicknesses Total: 230

Characteristics of breast mass cell
nuclei derived from image (e.g. cell
radius, texture, area, smoothness,
symmetry) Total: 30

Age, BMI, family history, number
of pregnancies, plasma glucose,
blood pressure, serum insulin,
tricep skin thickness Total: 8

Age, sex, chest pain type, angina, blood
pressure, serum cholestoral, blood sugar,
heart rate, electrocardiogram results
Total: 13

Dataset size Total: 348
Healthy: 102 (29.3%)
Patients: 246 (70.7%)

Total: 569
Healthy: 357 (62.7%)
Patients: 212 (37.3%)

Total: 768
Healthy: 500 (65.1%)
Patients: 268 (34.9%)

Total: 303
Healthy: 138 (45.5%)
Patients: 165 (54.5%)

Global Training
Set

Total: 160
Healthy: 80 (50%)
Patients: 80 (50%)

Total: 360
Healthy: 180 (50%)
Patients: 180 (50%)

Total: 400
Healthy: 200 (50%)
Patients: 200 (50%)

Total: 240
Healthy: 120 (50%)
Patients: 120 (50%)

Test Set Total: 188
Healthy: 22 (11.7%)
Patients: 166 (88.3%)

Total: 209
Healthy: 177 (84.7%)
Patients: 32 (15.3%)

Total: 368
Healthy: 300 (81.5%)
Patients: 68 (18.5%)

Total: 63
Healthy: 18 (28.6%)
Patients: 45 (71.4%)
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performance relative to the average single institution model, for all
classifier types (ANN, SVM, RF) and all datasets (two-way ANOVA,
classifier type × examples per agent, P < 0.01). This effect was most
pronounced when local datasets were very small. Even as the average
single institution model performance dropped, ensembling agents
trained on these very small local datasets resulted in improved per-
formance with distributed learning. While this effect was not as pro-
nounced when local datasets were larger, distributed learning always
improved performance over the average single institution model.

In general, distributed model performance decreased relative to the
central model as local datasets grew smaller. In the case of small local

datasets (2, 4, 8, or 10 examples per institution), distributed RF out-
performed distributed ANN and SVM on average across the four data-
sets (two-way ANOVA, classifier type × database, P < 0.001).

As expected, the computational time for training agents at local
institutions was reduced as local dataset sizes decreased (Supplemental
Figure S2). Generally, SVM models required the shortest training time
and RF models required the longest. Inference time for the distributed
ensemble models increased proportionally with the number of agents in
the ensemble, for all three classifier types, and was generally longer
than central learning models (Supplemental Figure S3). Inference times
were shortest for distributed SVM and ANN ensembles and longest for
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Fig. 2. Distributed learning by ensembling individual agents improves performance compared to individual agents. The performance of artificial neural networks (2
layers with 128 neurons per layer), support vector machines (sigmoid kernel), and random forest (1000 trees) were evaluated on four datasets. Single institution
model performance degraded as the size of local training datasets decreased. A distributed learning model, using an ensemble of independently trained agents,
significantly increased performance compared to single institution models. Data are expressed as the mean + standard deviation of Monte-Carlo cross-validation
runs. Significance was evaluated by a two-way ANOVA, classifier type × examples per agent; *P < 0.01.
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distributed RF ensembles. However, parallelizing and optimizing com-
putations could improve inference computation times.

5.2. Effect of number of institutions

Next, we evaluated the effect of the number of collaborating in-
stitutions on distributed model performance. In distributed learning,
increased collaboration results in more locally trained agents added to
the global ensemble. Thus, while local agents see the same limited
number of datasets, the distributed model effectively samples from a
larger dataset.

As the benefits of distributed learning were most salient in the case
of small local datasets, the number of examples per agent were set to
two and remained balanced. Starting with a single institution, more
collaborating institutions were simulated by progressively adding lo-
cally trained agents to the ensemble. As a point of comparison, for each
level of collaborating institutions, a central model was simulated by
training a single model on the same number of datasets collected into a
hypothetical central database.

Across datasets, distributed model performance increased with the
number of collaborating institutions (Fig. 3). However, the

improvement plateaued, as performance with 30–70% of collaborating
institutions was comparable to 100% collaboration. This plateau mir-
rored the learning curve in central learning, and in general occurred at
the same number of collaborating institutions. Conversely, removing a
substantial portion of models from the ensemble (30–50%) does not
impact performance, demonstrating the stability of the ensembling
approach.

5.3. Effect of unevenly sized training sets at institutions

We then simulated the scenario of non-uniform training set sizes
across institutions on distributed model performance. Given that clas-
sifier performance generally improves with more data, we explored
whether weighting local agents based on their training set size would
improve the classification results of the distributed learning model
when local training sets sizes are non-uniform. Again, local training sets
remained class-balanced. Keeping the total number of training samples
constant, as per Table 1, the size of each agent’s local dataset was
randomly set at 25% or less of the total training size; thus, local training
set sizes were non-uniform.

For non-uniform training set sizes, weighting local agent’s input to
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the ensemble based on their training set size generally improved per-
formance compared to the same model without weighting (Fig. 4).

5.4. Effect of imbalanced training sets at institutions

We evaluated the effect of imbalanced training data at local in-
stitutions, a more plausible scenario, on distributed model performance.
Therefore, the class balance in the global training set was retained
while creating class imbalances in the local training subsets, biasing
local datasets either toward a majority of healthy examples or a ma-
jority of patient examples. In this experiment, the agent dataset size was
set to ten while the ratio of majority to minority class examples avail-
able to each agent was varied from balanced (5:5) to very imbalanced
(9:1).

In the presence of local class imbalance, the average single institu-
tion model performed worse compared to the balanced case. Generally,
performance of the single institution models worsened with increasing
class imbalance (Fig. 5).

Distributed ANN and RF models were not affected by class im-
balance and achieved classification results similar to the balanced case
in all experiments. However, distributed SVM was negatively impacted
by local class imbalance in the mild cognitive impairment, diabetes,
and heart disease datasets (Fig. 6).

5.5. Distributed learning on a multi-institutional dataset

Finally, we evaluated distributed learning by ensembling on the
actual data distribution of the multi-institutional ADNI dataset. The

data used in this study was collected across 72 institutions. However, 29
institutions had to be excluded for this secondary experiment because
their local datasets only contained a single class, which prevents proper
training of the machine learning models. Of the remaining 43 institu-
tions, 38 institutions were randomly selected for training and the re-
maining five institutions were used for testing (Table 2). Local agents
were trained according to the actual data collected at each institution,
and their predictions on the test data were ensembled. This was done
for all three classifier types. Central learning was performed on the
amalgamation of the data from the 38 training sites.

The multi-institutional ADNI data was non-uniform in local training set
sizes (median: 6, interquartile range: 5–8) and imbalanced (median:
66.7% patient examples, interquartile range: 50–77.8%). Unlike the si-
mulated experiments where the global training set was class-balanced, in
the multi-institutional ADNI data, the global training set was skewed to-
wards patient examples (66.8%), reflecting the actual data distribution.
Though this skew did not negatively impact central learning performance,
it did result in poorer distributed learning performance in SVM and RF
classifiers, which performed worse than single institution models.
Contrary to this finding, distributed ANNs did perform better than single
institution models when agents were unweighted, which was further im-
proved by weighting agents by their local training set size (Table 3).

6. Discussion

We demonstrated that popular ANN, RF, and SVM machine learning
classifiers can be used for distributed learning, a framework for ma-
chine learning without sharing data. Using this framework, institutions
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can collaborate by sharing models instead of data, while ensembling
these locally trained agents generally improves the overall perfor-
mance.

We have shown that distributed learning is not restricted to a single
type of machine learning classifier. Previous works have only evaluated
ensembling for training machine learning models using large local da-
tasets containing medical data (120–1500 examples) [14,16]. The
limiting case of very small local datasets is particularly interesting for
medicine because it simulates the case where institutions may not have
previously considered using their data for machine learning because of
too small datasets, or the case of rare diseases, where patient popula-
tions even at large institutions are very small and may have been un-
derstudied [4]. It should be noted that the disease examples used in this
work are not considered rare diseases. Due to the problems described
above, there are no large enough datasets available for rare diseases
that could have been used in this work. Thus, rare diseases had to be
simulated by creating small local datasets. However, we believe that the
results of this study generally hold true for true rare diseases.

The distributed learning case of training independent models on
independent subsets of data used here is conceptually similar to boot-
strap aggregation without replacement, an ensemble learning meta-al-
gorithm [17]. This may explain why distributed RF performed best in
most test cases. RF models use an ensemble of decision trees trained on
subsets of training data. Ensembling RF models trained on distributed
data may be similar to training a single large RF model on the hy-
pothetical global training set. However, distributed RF performed much
worse compared to centrally trained RF on the challenging mild cog-
nitive impairment task; this was particularly the case with the actual
distribution of the multi-institutional ADNI data. Thus, with more
challenging datasets, models other than RF may be needed. Ad-
ditionally, in tasks such as image segmentation, a RF model might not
be optimal and alternatives, such as convolutional neural networks
[18], will need to be explored for distributed learning.

Using multi-institutional datasets for model training is important
because it increases the amount and variety of training data. In central
learning, adding more training data generally improves performance,
known as a learning curve. We and others [14] show that adding more
collaborating institutions mimics this phenomena, as distributed model
performance increases as more locally trained agents are added to the
global model. This suggests that the distributed model is able to ef-
fectively take advantage of an increased amount of training data
without actually requiring data sharing. The distributed model ap-
proach is also more feasible for healthcare data, as ethical and legal
concerns of data privacy in healthcare make the simulated central
model approach unlikely to be implemented for many diseases [5–9].

Training models on multi-institution datasets increases the model’s
generalizability, as it reduces model overfitting to single institution’s
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Fig. 6. Distributed learning ANN and RF models are not affected by class imbalance in agent’s local datasets. However, class imbalance in agent’s local datasets
affects distributed SVM performance. Data are expressed as mean + standard deviation of Monte-Carlo cross-validation runs.

Table 2
Statistics of the multi-institutional ADNI dataset.

Original dataset Multi-
institutional
dataset

Training data Test data

Number of
Institutions

72 43 38 5

N across all institutions
Total 348 283 244 39
Healthy 102 94 81 13
Patients 246 189 163 26

Total examples per institution
Mean ( ± SD) 4.83 ± 3.19 6.58 ± 2.81 6.42 ± 2.83 7.80 ± 2.59
Median 4.5 6 6 8
Range (min,

max)
1, 14 2, 14 2, 14 4, 11

Interquartile
range

2–7 5–8 4.75–8 5.5–10

Healthy examples per institution
Mean ( ± SD) 1.42 ± 1.29 2.19 ± 1.03 2.13 ± 1.02 2.60 ± 1.14
Median 1 2 2 3
Range (min,

max)
0, 4 1, 4 1, 4 1, 4

Interquartile
range

0–2 1–3 1–3 1.5–3.5

Patient examples per institution
Mean ( ± SD) 3.42 ± 2.47 4.40 ± 2.40 4.29 ± 2.46 5.20 ± 1.92
Median 3 4 4 5
Range (min,

max)
0, 12 1, 12 1, 12 3, 8

Interquartile
range

1–5 3–6 2–6 3.5–7

Class balance per institution (as % patient examples)
Mean ( ± SD) 70.2 ± 29.5 64.1 ± 15.5 63.7 ± 16.1 67.1 ± 9.85
Median 75 66.7 66.7 72.7
Range (min,

max)
0, 100 33.3, 85.7 33.3, 85.7 55.6, 75.0

Interquartile
range

56.0–100 50.0–77.8 50–77.8 56.4–75.0

Table 3
Performance of distributed learning on multi-institutional ADNI data subset.
Data are the macro-average F1 score on the test set.

Classifier ANN SVM RF

Central learning 0.71 0.69 0.71
Single institution 0.52 0.45 0.46
Distributed learning (unweighted) 0.53 0.40 0.40
Distributed learning (weighted) 0.55 0.40 0.40
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idiosyncrasies or overcomes limitations, such as local class imbalance.
Poor performance of single institution models may be partly attribu-
table to over- or under-fitting of the agents to local datasets, resulting in
highly biased models with poor generalizability. However, when suf-
ficient numbers of agents are ensembled, the biases of individual agents
are averaged out, which may partly explain the improved classification
performance with distributed learning, even in case of very weak
classifiers trained using very few samples. While previous studies on
ensembling models evaluated local class imbalance, this was limited to
imbalance in a single institution [14]. We extended this to multi-in-
stitutional data imbalance, where class imbalance is prevalent across all
institutions, which may better mimic a real-world scenario for dis-
tributed data. We show that while single institution models perform
poorly with local class imbalance, distributed ANN and RF models are
less affected by local class imbalance and can generalize to unseen data
better than distributed SVM models. As local datasets were simulated
by sampling without replacement from a single dataset, the variability
between institutions may be limited. Therefore, we used a subset of the
multi-institutional ADNI database to evaluate distributed learning on a
real data distribution, where local institutions vary in size and disease
prevalence. Here, distributed ANN outperformed distributed RF and
SVM. Correcting for differing sample sizes in local institutions by
weighting local agents improved performance. Future work may in-
vestigate methods for combining agents that improve ensemble per-
formance, such as accounting for differences in disease prevalence in
local agent training datasets or error on the training set. Additionally,
the effect of unique patient populations at local institutions, non-
identical data distributions, and measurement differences (e.g. different
magnetic resonance imaging sequences or hardware) between institu-
tions remains to be investigated.

Ensembling locally trained agents has the advantage of being easy
to implement. Existing web platforms for multi-site collaboration and
model training could be used to validate and implement this approach
[19,20]. As ensembling is theoretically capable of combining multiple
types of machine learning classifiers, medical institutions are not re-
quired to implement the same classifier and retain the freedom to
choose their own model. While cyclical weight transfer [14] and fed-
erated averaging [10–13] may offer theoretical performance improve-
ments in the case of few training examples per agent or imbalanced
local datasets, as they have the advantage of combining information
from all local datasets into a single model, this has yet to be evaluated.
Additionally, if a local institution needs to add or remove data from the
cyclical or federated distributed model, then the entire model would
need to be retrained at all institutions, incurring large computational
costs. Here, ensembling offers an advantage over these alternate ap-
proaches, as only a single institution would need to retrain its agent to
add or remove data from the global distributed model.

For distributed learning by ensembling, inference computational
times increased proportionately with the number of agent models from
local institutes. However, it bears noting that the computation times
depend on various factors, including the hardware used and the exact
algorithm implementation. Future work could aim to improve compu-
tational efficiency in distributed learning, for example through paral-
lelizing or optimizing computations. Alternatively, locally trained
classifiers could be combined into a single global model using model
distillation [21], which would reduce computation time at inference.

Future work may extend these studies to other supervised learning
problems, such as multi-class classification, regression problems, and
image segmentation. Additionally, extensions for distributed learning in
unsupervised learning tasks, such as anomaly detection or generative
models, may be explored.

7. Conclusions

We demonstrate that ensembling of independently trained models is a
promising approach to distributed learning using confidential datasets.

Even in situations where local datasets are very small, such as may be the
case of rare diseases or widely distributed data, ensembling locally trained
agents significantly improves predictive performance compared to a model
trained at a single institution with a small number of datasets. Distributed
learning performance improves as more locally trained agents are added to
the ensemble. When local datasets are class-balanced, ANN, RF, or SVM
classifiers may be used to train local agents. However, distributed SVM
performs poorer in cases of class-imbalanced local datasets. Distributed RF
and ANN tend to be robust in case of imbalanced data at local institutions.
Thus, RF or ANN classifiers may be better suited to distributed learning by
ensembling. The simplicity of the approach combined with the cir-
cumvention of the need to share data may make it easier to develop and
deploy machine learning powered solutions in healthcare.
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